Research

The electrical ecosystem

Cable bacteria are true ecosystem engineers, as they have a disproportionally large impact on their environment. We want to understand know how such “electrical ecosystems” function.

The electrical organism

Cable bacteria have a strange and intriguing metabolism, where different cells cooperate via electrical currents to ensure the energy supply of the multicellular organism. We want to understand know how this “electrical metabolism” functions.

The conductive structure

Cable bacteria have evolved an organic structure that enables a highly efficient electron transport over large distances (Meysman et al., Nat Comm., 2019). We want to understand what this material is and how it enables such efficient electron transport.

Research questions

  • Where do cable bacteria occur?
  • How abundant and active are cable bacteria in natural systems?
  • What is the impact of cable bacteria on the geochemical cycling and the local microbial community?

Research questions

  • What metabolic pathways are cable bacteria capable of?
  • How is the mechanism of long distance electron transport coupled to energy conservation?
  • How do cells interact with each other within a given multicellular filament?
  • How do cable bacteria grow and survive?

Research questions

  • What is the chemical structure and composition of the conductive structures?
  • What is the fundamental mechanism of electron transport?
  • What are the electrical and optical properties?
  • What are potential applications in bio-electronics and biotechnology?

Research approach

The Microbial Electricity research team performs field work in a wide range of habitats across the globe, and combines methods from geochemistry (e.g. microsensor profiling, pore water and solid phase analysis) as well as techniques from molecular microbiology (e.g. amplicon sequencing, q-PCR, meta-genomics).

 

Research approach

The Microbial Electricity research team performs laboratory experiments, where cable bacteria are enriched and cultivated under controlled conditions, often in combination with isotope labeling. To elucidate the metabolism, we combine a portfolio of methods, including advanced microscopy (SEM, TEM, AFM), electrochemistry (Voltammetry), spectroscopy (Raman, IR), and chemical imaging (TOF-SIMS, nanoSIMS), as well as techniques from molecular microbiology (e.g. genomics).

Research approach

The Microbial Electricity research team newly develops and applies single-filament characterization approaches, where individual filaments are isolated from the sediment and transferred to costum made electrode setups. This enables the characterization of the electrical, electrochemical and opto-electronic properties of the conductive structures.

 

Key Publications

2021

  • Boschker H.T.S., Cook P.L.M., Polerecky L., Eachambadi R.T., Lozano H., Hidalgo-Martinez S., Khalenkow D., Spampinato V., Claes N., Kundu P., Wang D., Bals S., Sand K.K., Cavezza F., Hauffman T., Bjerg J.T., Skirtach A.G., Kochan K., McKee M., Wood B., Bedolla D., Gianoncelli A., Geerlings N.M.J., Van Gerven N., Remaut H., Geelhoed J.S., Millan-Solsona R., Fumagalli L., Nielsen L.P., Franquet A., Manca J.V., Gomila G. & Meysman F.J.R. (2021) Efficient long-range conduction in cable bacteria through nickel protein wires. Nature Communications, 12: 3996. DOI: 10.1038/s41467-021-24312-4 (journal website)
  • Geerlings N.M.J., Geelhoed J.S., Vasquez-Cardenas D., Kienhuis M.V.M., Hidalgo-Martinez S., Boschker H.T.S., Middelburg J.J., Meysman F.J.R. & Polerecky L. (2021) Cell Cycle, Filament Growth and Synchronized Cell Division in Multicellular Cable Bacteria. Frontiers in Microbiology, 12: 46. DOI: 10.3389/fmicb.2021.620807 (journal website)
  • 2020

    • Geerlings N.M.J., Karman C., Trashin S., As K.S., Kienhuis M.V.M., Hidalgo-Martinez S., Vasquez-Cardenas D., Boschker H.T.S., De Wael K., Middelburg J.J., Polerecky L. & Meysman F.J.R. (2020) Division of labor and growth during electrical cooperation in multicellular cable bacteria. Proceedings of the National Academy of Sciences of the USA, 117: 5478-5485. DOI: 10.1073/pnas.1916244117 (journal website)
    • Vasquez-Cardenas D., Meysman F.J.R. & Boschker H.T.S. (2020) A Cross – System Comparison of Dark Carbon Fixation in Coastal Sediments. Global Biogeochemical Cycles, 34. DOI: 10.1029/2019GB006298 (journal website)
    • Eachambadi R.T., Bonne R., Cornelissen R., Hidalgo-Martinez S., Vangronsveld J., Meysman F.J.R., Valcke R., Cleuren B. & Manca J.V. (2020) An Ordered and Fail-Safe Electrical Network in Cable Bacteria. Advanced Biosystems, 4: 2000006. DOI: 10.1002/adbi.202000006 (journal website)
    • Geelhoed J.S., van de Velde S.J. & Meysman F.J.R. (2020) Quantification of Cable Bacteria in Marine Sediments via qPCR. Frontiers in Microbiology, 11: 1506. DOI: 10.3389/fmicb.2020.01506 (journal website)
    • Hermans M., Risgaard-Petersen N., Meysman F.J.R. & Slomp C.P. (2020) Biogeochemical impact of cable bacteria on coastal Black Sea sediment. Biogeosciences, 17, 5919–5938. DOI: 10.5194/BG-17-5919-2020 (journal website)
    • Bonne R., Hou J.-L., Hustings J., Wouters K., Meert M., Hidalgo-Martinez S., Cornelissen R., Morini F., Thijs S., Vangronsveld J., Valcke R., Cleuren B., Meysman F.J.R. & Manca J.V. (2020) Intrinsic electrical properties of cable bacteria reveal an Arrhenius temperature dependence. Scientific Reports, 10, 19798. DOI: 10.1038/S41598-020-76671-5 (journal website)

    2019

    • Kjeldsen K.U., Schreiber L., Thorup C.A., Boesen T., Bjerg J.T., Yang T., Dueholm M.S., Larsen S., Risgaard-Petersen N., Nierychlo M., Schmid M., Boggild A., van de Vossenberg J., Geelhoed J.S., Meysman F.J.R., Wagner M. Nielsen P. H., Nielsen, L.P. & Schramm A. (2019) On the evolution and physiology of cable bacteria. Proceedings of the National Academy of Sciences of the USA, 116: 19116-19125. DOI: 10.1073/pnas.1903514116 (journal website)
    • Hermans M., Lenstra W.K., Hidalgo-Martinez S., van Helmond N.A.G.M., Witbaard R., Meysman F.J.R., Gonzalez S. & Slomp C.P. (2019) Abundance and biogeochemical impact of cable bacteria in Baltic sea sediments. Environmental Science and Technology, 53: 7494-7503. DOI: 10.1021/acs.est.9b01665 (journal website)
    • Meysman F.J.R., Cornelissen R., Trashin S., Bonné R., Hidalgo-Martinez S., van der Veen J., Blom C.J., Karman C., Hou J.-L., Thiruvallur Eachambadi R., Geelhoed J.S., De Wael K., Beaumont H.J.E., Cleuren B., Valcke R., van der Zant H.S.J., Boschker H.T.S. & Manca J.V. (2019) A highly conductive fibre network enables centimetre-scale electron transport in multicellular cable bacteria. Nature Communications, 10, 4120. DOI: 10.1038/s41467-019-12115-7 (journal website)
    • Kessler A.J., Wawryk M., Marzocchi U., Roberts K.L., Wong W.W., Risgaard-Petersen N., Meysman F.J.R., Glud R.N. & Cook P.L.M. (2019) Cable bacteria promote DNRA through iron sulfide dissolution. Limnol. Oceanogr, 64: 1228–1238. DOI: 10.1002/lno.11110 (journal website)
    • Geerlings N.M.J., Zetsche E.-M., Hidalgo-Martinez S., Middelburg J.J. & Meysman F.J.R. (2019) Mineral formation induced by cable bacteria performing long-distance electron transport in marine sediments. Biogeosciences, 16: 811–829. DOI: 10.5194/bg-16-811-2019 (journal website)

    2018

    • Burdorf L.D.W., Malkin S.Y., Bjerg J.T., van Rijswijk P., Criens F., Tramper A. & Meysman F.J.R. (2018) The effect of oxygen availability on long-distance electron transport in marine sediments. Limnology & Oceanography, 1799–1816. DOI: 10.1002/lno.10809 (journal website)
    • Cornelissen R., Bøggild A., Thiruvallur Eachambadi R., Koning R.I., Kremer A., Hidalgo-Martinez S., Zetsche E.-M., Damgaard L.R., Bonné R., Drijkoningen J., Geelhoed J.S., Boesen T., Boschker H.T.S., Valcke R., Nielsen L.P., D’Haen J., Manca J.V. & Meysman F.J.R. (2018) The Cell Envelope Structure of Cable Bacteria. Frontiers in Microbiology, 9:3044. DOI: 10.3389/fmicb.2018.03044 (journal website)
    • Marzocchi U., Bonaglia S., van de Velde S.J., Hall P.O.J., Schramm A., Risgaard-Petersen N. & Meysman F.J.R. (2018) Transient bottom water oxygenation creates a niche for cable bacteria in long-term anoxic sediments of the Eastern Gotland Basin. Environmental Microbiology, 20 (8), 3031–3041. DOI: 10.1111/1462-2920.14349 (journal website)
    • Bjerg J.T., Boschker H.T.S., Larsen S., Berry D., Schmid M., Millo D., Tataru P., Meysman F.J.R., Wagner M., Nielsen L.P. & Schramm A. (2018) Long-distance electron transport in individual, living cable bacteria. PNAS, 115 (22), 5786-5791. DOI: 10.1073/pnas.1800367115 (journal website)
    • Sulu-Gambari F., Hagens M., Behrends T.,Seitaj D., Meysman F.J.R., Middelburg J. & Slomp C.P. (2018) Phosphorus Cycling and Burial in Sediments of a Seasonally Hypoxic Marine Basin. Estuaries and Coasts, 41: 921-939. DOI: 10.1007/s12237-017-0324-0 (journal website)
    • Meysman F.J.R. (2018) Cable bacteria take a new breath using long-distance electricity. Trends in Microbiology, 26(5):411-422. DOI: 10.1016/j.tim.2017.10.011 (journal website)

    2017

    • Seitaj D., Sulu-Gambari F., Burdorf L.D.W., Romero-Ramirez A., Maire O., Malkin S.Y., Slomp C.P. & Meysman F.J.R. (2017) Sedimentary oxygen dynamics in a seasonally hypoxic basin. Limnology and Oceanography, 62, 452-473. DOI: 10.1002/lno.10434 (journal website)
    • Burdorf L.D.W., Tramper A., Seitaj D., Meire L., Hidalgo-Martinez S., Zetsche E.-M., Boschker H.T.S. & Meysman F.J.R. (2017) Long-distance electron transport occurs globally in marine sediments. Biogeosciences, 14, 683-701. DOI: 10.5194/bg-14-683-2017 (journal website)
    • van de Velde S.J., Callebaut I., Gao Y. & Meysman F.J.R. (2017) Impact of electrogenic sulfur oxidation on trace metal cycling in a coastal sediment. Chemical Geology, 452, 9-23. DOI: 10.1016/j.chemgeo.2017.01.028 (journal website)
    • Sulu-Gambari F., Roepert A., Jilbert T., Hagens M., Meysman F.J.R. & Slomp C.P. (2017) Molybdenum dynamics in sediments of a seasonally-hypoxic coastal marine basin. Chemical Geology, 466, 627-640. DOI: 10.1016/j.chemgeo.2017.07.015 (journal website)

    2016

    • Rao A.M.F, Malkin S.Y., Hidalgo-Martinez S. & Meysman F.J.R. (2016) The impact of electrogenic sulfide oxidation on elemental cycling and solute fluxes in coastal sediment. Geochimica et Cosmochimica Acta, 172, 265-286. DOI: 10.1016/j.gca.2015.09.014 (journal website)
    • Sulu-Gambari F., Seitaj D., Meysman F.J.R. & Slomp C.P. (2016) Impact of Cable Bacteria on Sedimentary Iron and Manganese Dynamics in a Seasonally-Hypoxic Marine Basin. Geochimica and Cosmochimica Acta, 192, 49-69. DOI: 10.1016/j.gca.2016.07.028 (journal website).
    • Burdorf L.D.W., Hidalgo-Martinez S., Cook P.L.M. & Meysman F.J.R. (2016) Long-distance electron transport by cable bacteria in mangrove sediments. Marine Ecology Progress Series, 545, 1-8. DOI: 10.3354/meps11635 (journal website)
    • van de Velde S.J., Lesven L., Burdorf L.D.W., Hidalgo-Martinez S., Geelhoed J.S., Van Rijswijk P., Gao Y. & Meysman F.J.R. (2016) The impact of electrogenic sulfur oxidation on the biogeochemistry of coastal sediments: a field study. Geochimica et Cosmochimica Acta, 194, 211-234. DOI: 10.1016/j.gca.2016.08.038 (journal website)

    2015

    • Meysman F.J.R., Risgaard-Petersen N., Malkin S.Y. & Nielsen L.P. (2015) The geochemical fingerprint of microbial long-distance electron transport in the seafloor. Geochimica et Cosmochimica Acta, 152, 122-142. DOI: 10.1016/j.gca.2014.12.014 (journal website)
    • Malkin S. & Meysman F.J.R. (2015) Rapid redox signal transmission by cable bacteria beneath a photosynthetic biofilm. Applied Environmental Microbiology, 81, 948-956. DOI: 10.1128/AEM.02682-14 (journal website)
    • Vasquez-Cardenas D., van de Vossenberg J., Polerecky L., Malkin S.Y., Schauer R., Confurius V., Hidalgo-Martinez S., Middelburg J.J., Meysman F.J.R. & Boschker H.T.S. (2015) Microbial carbon metabolism associated with electrogenic sulfide oxidation in coastal sediments. The ISME journal, 9, 1966–1978. DOI: 10.1038/ismej.2015.10 (journal website)
    • Seitaj D., Schauer R., Sulu-Gambari F., Hidalgo-Martinez S., Malkin S.Y., Burdorf L.D.W., Slomp C.P. & Meysman F.J.R. (2015) Cable bacteria generate a firewall against euxinia in seasonally hypoxic basins. PNAS, 112 (43), 13278-13283. DOI: 10.1073/pnas.1510152112 (journal website)
    • Sulu-Gambari F., Seitaj D., Meysman F.J.R., Schauer R., Polerecky L. & Slomp C.P. (2015) Cable Bacteria Control Iron-Phosphorus Dynamics in Sediments of a Coastal Hypoxic Basin. Environmental Science & Technology, 50, 1227-1233. DOI: 10.1021/acs.est.5b04369 (journal website)

    2014

    • Malkin S., Rao A., Seitaj D., Vasquez-Cardenas D., Zetsche E.-M., Hidalgo-Martinez S., Boschker H.T.S. & Meysman F.J.R. (2014) Natural occurrence of microbial sulphur oxidation by long-range electron transport in the seafloor. The ISME journal, 8, 1843–1854. DOI: 10.1038/ismej.2014.41 (journal website)
    • Rao A., Malkin S., Montserrat F. & Meysman F.J.R. (2014) Alkalinity production in intertidal sands intensified by lugworm bioirrigation. Estuarine and Coastal Shelf Science, 148, 36-47. DOI: 10.1016/j.ecss.2014.06.006 (journal website)

     

    Collaborations

    • Jean Manca (X-LAB, Hasselt University, Belgium). Characterziation of electrical properties.
    • Herre van der Zant (TU Delft, The Netherlands)
    • Jack Middelburg, Lubos Polerecky (Utrecht University, The Netherlands). Advanced imaging at the NanoSims facility – the Dutch national facility for high-resolution in situ isotope and element analysis.
    • Roman Koning (LUMC, Leiden, The Netherlands). Cryo-TEM imaging at NECEN – the Dutch national facility for advanced cryo-transmission electron microscopy.
    • Lars Peter Nielsen and Nils Risgaard-Petersen (Department of Bioscience – Center for Geomicrobiology, University of Aarhus, Denmark).
    • Perran Cook (Monash University, Melbourne, Australia) Cooperation on the natural distribution and geochemical impact of electrogenic sulphur oxidation in the Yarra River Estuary (Australia)