Research

The electrical ecosystem

Cable bacteria are true ecosystem engineers, as they have a disproportionally large impact on their environment. We want to understand know how such “electrical ecosystems” function.

The electrical organism

Cable bacteria have a strange an intriguing metabolism, where different cells cooperate via electrical currents to ensure the energy supply of the multicellular organism. We want to understand know how this “electrical metabolism” functions.

The conductive structure

Cable bacteria have evolved an organic structure that enables a highly efficient electron transport over large distances (Meysman et al., Nat Comm., 2019). We want to understand what this material is and how it enables such efficient electron transport.

Research questions

  • Where do cable bacteria occur?
  • How abundant and active are cable bacteria in natural systems?
  • What is the impact of cable bacteria on the geochemical cycling and the local microbial community?

Research questions

  • What metabolic pathways are cable bacteria capable of?
  • How is the mechanism of long distance electron transport coupled to energy conservation?
  • How do cells interact with each other within a given multicellular filament?
  • How do cable bacteria grow and survive?

Research questions

  • What is the chemical structure and composition of the conductive structures?
  • What is the fundamental mechanism of electron transport?
  • What are the electrical and optical properties?
  • What are potential applications in bio-electronics and biotechnology?

Research approach

The Microbial Electricity research team performs field work in a wide range of habitats across the globe, and combines methods from geochemistry (e.g. microsensor profiling, pore water and solid phase analysis) as well as techniques from molecular microbiology (e.g. amplicon sequencing, q-PCR, meta-genomics).

 

Research approach

The Microbial Electricity research team performs laboratory experiments, where cable bacteria bacteria are enriched and cultivated under controlled conditions, often in combination with and isotope labeling. To elucidate the metabolism, we combine aportfolio of methods, including advanced microscopy (SEM, TEM, AFM), electrochemistry (Voltammetry), spectroscopy (Raman, IR), and chemical imaging (TOF-SIMS, nanoSIMS), as well as techniques from molecular microbiology (e.g. genomics).

Research approach

The Microbial Electricity research team newly develops and applies single-filament characterization approaches, where individual filaments are isolated from the sediment and transferred to costum made electrode setups. This enables the characterization of the electrical, electrochemical and opto-electronic properties of the conductive structures.

 

Key Publications

2019

  • Meysman F.J.R., Cornelissen R., Trashin S., Bonné R., Hidalgo-Martinez S., van der Veen J., Blom C.J.,  Karman C., Hou J.-L., Thiruvallur Eachambadi R., Geelhoed J.S., De Wael K., Beaumont H.J.E., Cleuren B., Valcke R., van der Zant H.S.J.,  Boschker H.T.S. & Manca J.V. (2019). A highly conductive fibre network enables centimetre-scale electron transport in multicellular cable bacteria. Nature Communications (in press).
  • Kessler A.J., Wawryk M., Marzocchi U., Roberts K.L., Wong W.W., Risgaard-Petersen N., Meysman F.J.R., Glud R.N. & Cook P.L.M. (2019). Cable bacteria promote DNRA through iron sulfide dissolution. Limnol. Oceanogr. 64: 1228–1238.
  • Geerlings N.M.J., Zetsche E.-M., Hidalgo-Martinez S., MiddelburgJ.J. & Meysman F.J.R. (2019) Mineral formation induced by cable bacteria performing long-distance electron transport in marine sediments. Biogeosciences, 16: 811–829.

2018

  • Burdorf L.D.W., Malkin S.Y., Bjerg J.T., van Rijswijk P., Criens F., Tramper A. & Meysman F.J.R. (2018) The effect of oxygen availability on long-distance electron transport in marine sediments. Limnology & Oceanography. DOI: 10.1002/lno.10809
  • Cornelissen R., Bøggild A., Thiruvallur Eachambadi R., Koning R.I., Kremer A., Hidalgo-Martinez S., Zetsche E.-M., Damgaard L.R., Bonné R., Drijkoningen J., Geelhoed J.S., Boesen T., Boschker H.T.S., Valcke R., Nielsen L.P., D’Haen J., Manca J.V. & Meysman F.J.R. (2018) The Cell Envelope Structure of Cable Bacteria. Frontiers in Microbiology. 9:3044  | DOI: 10.3389/fmicb.2018.03044
  • Marzocchi U., Bonaglia S., van de Velde S., Hall P.O.J., Schramm A., Risgaard-Petersen N. & Meysman F.J.R. (2018) Transient bottom water oxygenation creates a niche for cable bacteria in long-term anoxic sediments of the Eastern Gotland Basin. Environmental Microbiology 20 (8), 3031–3041.
  • Bjerg J.T., H.T.S. Boschker, Larsen S., Berry D., Schmid M., Millo D., Tataru P., Meysman F.J.R., Wagner M., Nielsen L.P., & Schramm A. (2018) Long-distance electron transport in individual, living cable bacteria PNAS, 115 (22) 5786-5791
  • Sulu-Gambari F., Hagens M., Behrends T., Seitaj D., Meysman F.J.R., Middelburg J. & Slomp C.P. (2018) Phosphorus Cycling and Burial in Sediments of a Seasonally Hypoxic Marine Basin. Estuaries and Coasts 41: 921-939. https://doi.org/10.1007/s12237-017-0324-0
  • Meysman F.J.R. (2018) Cable bacteria take a new breath using long-distance electricity Trends in Microbiology  DOI: 10.1016/j.tim.2017.10.011.

2017

  • Seitaj D., Sulu-Gambari F., Burdorf L.D.W., Romero-Ramirez A., Maire O., Malkin S.Y., Slomp C.P., Meysman F.J.R. (2017) Sedimentary oxygen dynamics in a seasonally hypoxic basin, Limnology and Oceanography 62, 452-473. (journal website)
  • Burdorf L.D.W., Tramper A., Seitaj D., Meire L., Hidalgo-Martinez S., Zetsche E., Boschker H.T.S., Meysman F.J.R. (2017) Long-distance electron transport occurs globally in marine sediments, Biogeosciences 14, 683-701. (journal website)
  • Van de Velde S., Callebaut I., Gao Y., Meysman F.J.R. (2017) Impact of electrogenic sulfur oxidation on trace metal cycling in a coastal sediment, Chemical Geology 452, 9-23. (journal website)
  • Sulu-Gambari F., Roepert A., Jilbert T., Hagens M., Meysman F.J.R., Slomp C.P. (2017) Molybdenum dynamics in sediments of a seasonally-hypoxic coastal marine basin, Chemical Geology 466, 627-640. (journal website)

2016

  • Rao A.M.F, Malkin S.Y., Hidalgo-Martinez S., Meysman F.J.R. (2016) The impact of electrogenic sulfide oxidation on elemental cycling and solute fluxes in coastal sediment. Geochimica et Cosmochimica Acta 172, 265-286. (PDF)
  • Sulu-Gambari F., Seitaj D., Meysman F.J.R., Slomp C.P. (2016) Impact of Cable Bacteria on Sediment Iron and Manganese Dynamics in a Seasonally-Hypoxic Marine Basin, Geochimica and Cosmochimica Acta 192, 49-69 (journal website).
  • Burdorf L.D.W., Hidalgo-Martinez S., Cook P.L.M., Meysman F.J.R. (2016) Long-distance electron transport by cable bacteria in mangrove sediments. Marine Ecology Progress Series 545, 1-8. (PDF)
  • van de Velde S., Lesven L., Burdorf L.D.W., Hidalgo-Martinez S., Geelhoed J.S., Van Rijswijk P., Gao Y., and Meysman F.J.R. (2016) The impact of electrogenic sulfur oxidation on the biogeochemistry of coastal sediments: a field study. Geochimica et Cosmochimica Acta 194, 211-234. (journal website)

2015

  • Meysman F.J.R., Risgaard-Petersen N., Malkin S.Y., Nielsen L.P. (2015) The geochemical fingerprint of microbial long-distance electron transport in the seafloor. Geochimica et Cosmochimica Acta 152, 122-142. (PDF)
  • Malkin S. and Meysman F.J.R. (2015) Rapid redox signal transmission by cable bacteria beneath a photosynthetic biofilm. Applied Environmental Microbiology 81, 948-956. (journal website)
  • Vasquez-Cardenas D., van de Vossenberg J., Polerecky L., Malkin S.Y., Schauer R., Confurius V., Hidalgo-Martinez S., Middelburg J.J., Meysman F.J.R., Boschker H.T.S. (2015) Microbial carbon metabolism associated with electrogenic sulfide oxidation in coastal sediments. The ISME journal (PDF)
  • Seitaj D., Schauer R., Sulu-Gambari F., Hidalgo-Martinez D., Malkin S.Y., Burdorf L.D.W., Slomp C.P., Meysman F.J.R. (2015) Cable bacteria generate a firewall against euxinia in seasonally hypoxic basins. PNAS (PDF)
  • Sulu-Gambari F., Seitaj D., Meysman F.J.R., Schauer R., Polerecky L., Slomp C.P. (2015) Cable Bacteria Control Iron-Phosphorus Dynamics in Sediments of a Coastal Hypoxic. Environmental Science & Technology 50, 1227-1233. (journal website)

2014

  • Malkin S., Rao A., Seitaj D., Vasquez-Cardenas D., Zetsche E., Hidalgo-Martinez S., Boschker H.T.S., Meysman F.J.R. (2014) Natural occurrence of microbial sulphur oxidation by long-range electron transport in the seafloor. The ISME journal doi: 10.1038/ismej.2014.41 (PDF)
  • Rao A., Malkin S., Montserrat F., Meysman F.J.R. (2014) Alkalinity production in intertidal sands intensified by lugworm bioirrigation. Estuarine and Coastal Shelf Science 148, 36-47. (PDF)

 

Collaborations

  • Jean Manca (X-LAB, Hasselt University, Belgium). Characterziation of electrical properties.
  • Herre van der Zant (TU Delft, The Netherlands)
  • Jack Middelburg, Lubos Polerecky (Utrecht University, The Netherlands). Advanced imaging at the NanoSims facility – the Dutch national facility for high-resolution in situ isotope and element analysis.
  • Roman Koning (LUMC, Leiden, The Netherlands). Cryo-TEM imaging at NECEN – the Dutch national facility for advanced cryo-transmission electron microscopy.
  • Lars Peter Nielsen and Nils Risgaard-Petersen (Department of Bioscience – Center for Geomicrobiology, University of Aarhus, Denmark).
  • Perran Cook (Monash University, Melbourne, Australia) Cooperation on the natural distribution and geochemical impact of electrogenic sulphur oxidation in the Yarra River Estuary (Australia)